Gating mechanism of a cloned potassium channel expressed in frog oocytes and mammalian cells.
نویسندگان
چکیده
We have cloned a cDNA coding for a delayed rectifier K+ channel from rat brain (RCK1) and rat muscle (RMK1) and expressed it in Xenopus oocytes and in a myoblast cell line (Sol-8). Stably transfected Sol-8 cells exhibited large outward K+ currents, which were indistinguishable from the K+ currents induced in Xenopus oocytes by injection of mRNA transcribed in vitro. RCK1 encodes a K+ channel with a unitary conductance of approximately 14 pS. The steep voltage dependence of channel opening resides in transitions between closed states, whereas the direct transitions into and out of the open state are very rapid and not markedly voltage-dependent. Channel inactivation is very slow, voltage-independent, and occurs from the open state only. We present a simple model that incorporates our findings and is consistent with the presumed structural symmetry of a functional K+ channel.
منابع مشابه
The Xenopus tropicalis orthologue of TRPV3 is heat sensitive
Thermosensitive members of the transient receptor potential (TRP) family of ion channels (thermal TRP channels) play a crucial role in mammalian temperature sensing. Orthologues of these channels are present in lower vertebrates and, remarkably, some thermal TRP orthologues from different species appear to mediate opposing responses to temperature. For example, whereas the mammalian TRPV3 chann...
متن کاملGating of IsK expressed in Xenopus oocytes depends on the amount of mRNA injected
IsK is a K+ channel of the delayed rectifier type widely distributed throughout both excitable and nonexcitable cells. Its structure is different from other cloned K+ channels and molecular details of its gating remain obscure. Here we show that the activation kinetics of IsK expressed in Xenopus oocytes depend upon the amount of its mRNA injected, with larger amounts resulting in slower activa...
متن کاملOpen State Destabilization by Atp Occupancy Is Mechanism Speeding Burst Exit Underlying KATP Channel Inhibition by Atp
The ATP-sensitive potassium (K(ATP)) channel is named after its characteristic inhibition by intracellular ATP. The inhibition is a centerpiece of how the K(ATP) channel sets electrical signaling to the energy state of the cell. In the beta cell of the endocrine pancreas, for example, ATP inhibition results from high blood glucose levels and turns on electrical activity leading to insulin relea...
متن کاملGating of single Shaker potassium channels in Drosophila muscle and in Xenopus oocytes injected with Shaker mRNA.
The voltage-dependent gating mechanism of single A-type potassium channels coded for by the Shaker locus of Drosophila was studied by single-channel recording. A-type channels expressed in Xenopus oocytes injected with Shaker B and Shaker D mRNA exhibited gating and voltage dependence that were qualitatively similar to those of the native Shaker A-types channels from embryonic myotubes. In all ...
متن کاملA recombinant inwardly rectifying potassium channel coupled to GTP- binding proteins
GTP-binding (G) proteins have been shown to mediate activation of inwardly rectifying potassium (K+) channels in cardiac, neuronal and neuroendocrine cells. Here, we report functional expression of a recombinant inwardly rectifying channel which we call KGP (or hpKir3.4), to signify that it is K+ selective, G-protein-gated and isolated from human pancreas. KGP expression in Xenopus oocytes resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 4 1 شماره
صفحات -
تاریخ انتشار 1990